技術論壇
發文時間
2020/11/13
小編
瀏覽次數 3716 留言數量 0 按讚 1
其他 產業分析AI職缺
隨著新興科技的不斷演進,從智慧型手機的普及,到大數據、雲端、平臺經濟的蓬勃發展並邁向成熟,2020台灣ICT人才發展報告指出,因應數位科技演進,未來於人工智慧(Artificial Intelligence, AI)、大數據分析(Big Data Analytics)、資訊安全(Cyber Security)與物聯網(Internet of Things, IoT)四大科技應用領域將快速成長,因此衍生之各領域專業人才需求也將增加,而國內現階段要發展AI,最缺的就是人才,資策會數位教育研究所針對人工智慧領域,蒐集並彙整產業人才需求概況,帶您來看看人工智慧產業最熱門的八項AI關鍵職務是什麼吧!
1. 資料工程師
在這個大數據的時代,由於分析用的資料量龐大,通常蒐集到的資料可能有缺失、格式錯誤、或是有著不合理的極端值,因此在運用資料進行分析前,必須要有人協助進行資料清洗的程序。
資料工程師就如同在廚房中要協助完成備料作業的重要人物,運用著資料組織與清理能力,協助進行資料的前處理,包含:資料擷取、資料清理、資料運算,並建立部署資料儲存環境的系統結構,以及協助處理資料過程遇到的資料庫效能、安全性以及自動化等問題排解。
2. 資料分析師
資料分析師指的是在組織中,協助資料轉換、萃取,從中彙整並理解各式資料生成的方式與商業邏輯的專業人員。他們需要知道如何提出正確的問題、善用資料視覺化工具,並具備數理統計與資料分析技能(如:探索式資料分析與非監督式學習、線性模型與監督式學習),針對應用情境提出分析建議、輔助公司商業決策。
如何將資料轉化成易讀性、具視覺化的展示效果,讓組織清楚掌握重點及商業價值,資料分析師功不可沒。
3. AI應用工程師
資策會MIC觀測AI發展趨勢指出「AI落地」將是未來產業焦點,在AI落地前「效率」問題需要被解決,因此需要AI應用工程師這號人物,以現有人工智慧技術,協助分析客戶需求,評估解決方案可行性,並進行系統整合測試計畫。他如同魔法師一般,將人工智慧應用技術由虛轉實,成為一個可使用、可產生價值的功能模型或產品。
AI應用工程師除具備一般軟硬體工程師的系統整合開發能力,更要對於人工智慧基礎,如:資料結構、機器學習、深度學習有一定的掌握度才行。
4. 機器學習工程師
美國求職網 Indeed曾表示2019年度最佳工作的第一名是機器學習工程師;LinkedIn在2019底發佈的2020 工作趨勢報告亦顯示,機器學習和人工智慧在過去4年的人才職缺成長速度達74%,成為年度新興工作。到底機器學習工程師的日常是什麼呢?
機器工程師扮演著將機器學習方法實作以設計AI解決方案的角色,他需要依據功能需求,使用現有演算法與領域資料集來整合、訓練、最佳化演算法模型,因此須熟悉主流機器/深度學習框架、雲端平台相關程式開發技能。
5. 演算法工程師
當現有演算法模型無法滿足組織業務需求,或是希望可藉由新的演算法模型來解決問題、創造營運價值,就需要靠演算法工程師之功力!演算法工程師除了負責人工智慧演算法的開發與設計,更要想辦法從數據中挖掘出隱藏價值,故演算法工程師除了具備演算法能力、機器學習/深度學習的理解,他要對產品及業務有相對的敏銳度和分析能力,並且還要保有持續學習的求知慾,每天蒐集並閱讀大量最新的演算法論文與研究,亦是演算法工程師的生活日常。
6. 資料科學家
曾被《哈佛商業評論》指為「21世紀最性感的工作」的資料科學家,被業界譽為這類的人才最難養成,不僅僅要懂統計、熟悉機器學習及深度學習、更要有資料分析的專業及能洞悉問題點的能力。
資料科學家擁有高薪的理由就是要清楚掌握問題的痛點,他不一定要資訊背景出身,但必須有能力將資訊、統計、業務三種領域的知識整合,並且需要對該產業有一定的商業知識與敏感度,協助組織找到成功的商業模式、提出洞見、提出商業預測模型,並將其分析結果努力導向組織走往正確的方向。
7. AI產品經理
有別於一般傳統產業的產品經理,工作重點著重在評估市場與消費者需求、制定產品開發策略及掌握產品開發進度,AI產品經理還需要掌握AI領域的基礎理論與應用知識,以面對在產品開發過程中可能面臨到的不確定性,如:投入AI技術後,軟體開發過程可能會變得更複雜、或是會有全新的設計產出或新的處理流程出現,這樣的產出是不是客戶想要的?
因此AI產品經理的挑戰即在於掌控整個開發團隊進度、把關產品開發品質之餘,要用對於AI領域知識的理解,在產品開發過程中針對問題做出適切的評估與判斷,創造AI產品之價值。
8. AI專案經理
為搭上AI的浪潮,每個組織想推動AI專案去改善生產流程、提升產能與創造效益,但推動一個AI專案容易嗎? IDC於2019年5月對2473家在營運中使用AI解決方案的機構進行調查,發現AI專案有超過50%以失敗收場。根據資策會MIC產業分析指出,導入前對AI基礎認識不夠、導入目的定義不清、輕忽導入AI的複雜性以及對導入效益過度期待等皆是造成AI失敗的原因。
故在AI導入的過程中,除技術類的人員投入,亦需要一位熟悉產業知識、又具溝通協調及問題解決能力的AI專案經理,協助進行AI專案計畫的執行和控管,並擔任客戶的聯繫窗口,提供適切專案滿足需求,並讓業務與IT等相關員工了解導入AI的效益以及彼此間的職責分工,共同努力完成專案任務。
在AI技術應用的演進下,幾乎各種產業、各個領域都能受惠於AI帶來的變革,唯有多元的人才,將跨領域與跨文化的思維結合AI核心技術,並輔以順暢的溝通,才能讓AI產業化更成功,更加速AI的落地。
財團法人資訊工業策進會∕數位教育研究所∕數位轉型訓練中心
林書萍 副規劃師