跳到主要內容
 

技術論壇


有沒有聽得懂閩南語的語音辨識?這種語言辨識的設置難度在哪?
大家一定對於google語音助理和蘋果的siri小姐不陌生吧?! 但是如果要讓小眾的閩南語人士也可以一同感受語音助理的便利性,未來會有人開發閩南語的系統嗎?如果要開發這樣的語音辨識系統跟中文的有什麼不同?難易度又是如何呢?
自然語言類 語音助理中文閩南語

2020/05/13linda.lin

235340

如何運用自然語言技術來提高工作生產力呢?
現在自然語言運算(NLP)的技術愈來愈成熟,身為企業主,想了解如何運用針對文字及語音辨識的NLP技術來提高工作生產力呢?
自然語言類 NLPAI

2020/05/04shuechang886

100240

流行語彙
請問是否有機會先了解這個題目之“流行語彙”呢?
自然語言類 流行語彙與布料規格AI分析流行語彙

2020/03/23Teeker

68810

NER在NLP中具備怎麼樣的任務?NLP又包含哪些技術?
上次去聽AIGO的論壇,聽到一位講師在分享NLP專案開發的過程,當中提到NLP中有個NER的名詞,想問大家NER是指甚麼? NLP領域還包含了哪些東西?
自然語言類 AINLP

2019/10/31slipknot

106641

大家有發現Gmail系統有提供智慧回覆與智慧撰寫的功能嗎?
有一次用Gmail對外商客戶寫英文信件的時候,突然發現到當我打字到一半,後面會出現灰色淺淺的字或句子,像是要把我想表達的信件寫完一樣。按個tab就變成正常黑色的字,瞬間幫我把後面比較通俗的信件結尾寫完了。這應該就是Gmail的大數據及AI做到的服務吧?
自然語言類 自然語言處裡大數據

2019/10/29warehouse

93650

讓AI來當法官,真的能作出公正的審判嗎?
讓AI來當法官,真的能作出公正的審判嗎? 從4月開始就看到有蠻多新聞報導愛沙尼亞即將推出AI法官,雖然目前只規劃針對小型訴訟案件,但這應該也讓人工智慧的應用跨出一大步! 但這也不免讓人擔憂,人工智慧能做出正確的審判嗎?因為審判的依據應該是來自大量案例跟法律條款,有沒有可能因為數據資料不夠全面等問題,導致判決結果出錯?
自然語言類 AI法官

2019/10/16yuhsuan

120380

對話機器人的對話設計(1)
原文內容 https://www.qztap.com/blog/index.php/2019/09/30/dialogue/ 聊天機器人,是除了人工智慧的程式之外,另外一個重要的部分應該是”對話設計”了。什麼是對話設計呢?請看以是的圖示:它就是把客人與機器人之間的對話寫出來, 如果把對話寫出來之後, 放進人工智慧的聊天機器人的系統裏, 就可以讓機器人像人一樣的對話嗎? 不! 但這是第一步! 如何來進行對話設計呢? 我們先來看看以下的對話內容: ## intent:bot_challenge - 你是機器人嗎? - 你是真人嗎? - 我是在跟機器人說話嗎? - 我是在跟真人說話嗎? utter_bot_challenge: - text: "我是主題式對話機器人,可以針對設定範圍內的問題來回應,如回應公司的特定的產品及服務的常問問題集等等問題;我可以為您做什麼呢?" 以上的對話是一個群組,其中 ## intent: bot_challenge —是使用者想要知道的是跟誰在講話的“意圖“,而不同的使用者會有不同的問法(列出愈多,就會讓智能客服更像真人),但其意圖,只是想進一步知道他是在跟機器人或真人在對話。 utter_bot_challenge – text: ””—是機器人回應的內容,當然,也可以提供多個回應的內容,愈多回應內容,同樣的意圖,就會有不同的說法,當然,也就能像真人。 我們將多個對話群組,組成情境(故事),愈多情境,表示機器人可以處理的情境愈多,如此,只要將收集足夠客戶問題,也就意味者這個智能客服機器人,可以解決愈多人的問題。 當我們把多個情境的對話群組放進智能客戶系統做訓練之後, 當然, 它就解決在情境內容的客戶問題! 如果, 從上說明的內容, 您想要多少個情境的主題才解決客戶所有的問題呢? 我想這是一個需要長期努力的過程!
自然語言類 網路語音訂單小幫手語音轉換成訂單

2019/10/01Teeker

87720

建構電話語音智能客服(總機)系統
原文:https://www.qztap.com/blog/index.php/2019/09/16/cs/ 您想過在家裏或公司的傳統電話都能變成一個智能的總機或客服系統嗎? 現在使用Line或WeChat 當然公司或個人的溝通變得很普遍,當然也變成24小時*365天隨時隨地的上班族,這是您想要的工作模式嗎? 如果您想把公司及個人的通訊分離, 這樣的客服(總機)系統,可以把工作與家庭時間,不用把LINE或WeChat的帳號給客戶! 這樣的智能服(總機)系統,是把現有的電話系統(PSTN類比訊號的資訊),經由ATA(類比電話適配器)將資料數位化, 再經由PBX與AI系統互動(NLU 伺服器, 包含TTS& STT等等的轉換), 達成智能互動的效果。 現在的電話總機總接起電話總是這麼說—“這裏是XX公司,要聽台語請按1,要聽國語,請按2,要聽客語,請按3……”, 如果,你是用手機來撥打時, 我相信你會遇對許多問題(除非你用擴音的方式), 而智能客服(總機), 是用自然語言對話, 讓人工智慧來回應您的需求。 您想試試這樣的系統嗎,請email到biz(at)qztap.com?我可以為您開啓一個sip phone的帳號 (voip),讓您來試試這樣的智能語音客服系統!如果想用傳統電話(市話/PSTN/家用電話)來試試的話也可以, 歡迎來信告知!
自然語言類 網路語音訂單小幫手

2019/09/16Teeker

87410

資料範例
請問可以提供影像tif檔範例嗎?謝謝!
自然語言類 報紙影像透過AI辨識建立檢索資料

2019/07/14強哥

80210

這種有可能能解,不過會有些先決條件得考慮
其實可能以關鍵字Keyword字典的方式,達到改善的效果先 雖然是自然語言這個範疇,不過因為法學上的用詞其實有些會與現實生活有區別,這是可以利用的第一點 第二點就是靠規則庫Rule based,好比說以例子中的『成年』、『未成年』會搞混,那是因為電腦並不了解這兩者在詞意上的不同;所以要給資料庫查詢命令前,必須先針對可能混淆電腦的詞彙進行分類與加工,舉例來說『成年』這個詞等於『已成年』,這樣電腦才比較容易分辨 另外也可以透過建立固定查詢SQL語法樣板這種方式,以kNN先把各種可能的關鍵字分類,每次查詢之前先透過kNN找出最接近的是哪一類,再產生出對資料庫查詢的完整語法,多訓練kNN來做到分類清晰,應該是有改善的效果
自然語言類 中文法學資料分詞器 #keyword #關鍵

2019/05/16laisan86

67740


最新發表
數位轉型時代人才職能的再進化
  近年來全球資訊產業趨勢變化快速,雲端運算、物聯網、資料科學、人工智慧和5G行動通訊等尖端技術日新月異的發展應用,帶動了數位經濟的興起,並同時重塑了全球經濟結構。根據世界經濟論壇(WEF)的預測,2022年全球GDP將有六成來自數位經濟,可見數位經濟的發展對全球經濟未來趨勢影響之重大,而其影響自然也將及於人力資源市場。   產業面臨這一波數位轉型,正如當初個人電腦、網際網路的普及一樣,將會完全翻轉全球經濟、以及企業現有的商業模式。過往數位科技人才大多為資通訊及高科技產業所需求,隨著產業積極導入數位工具及人工智慧應用、企圖尋求下一波創新成長動能,各行各業展開數位科技人才爭奪,根據國家發展委員會對於臺灣未來十年人力市場之預估,數位人才將呈現大規模人力缺口。   AI取代工作 還是創造機會 科技帶來翻天覆地的影響,新興領域之人才需求不斷攀升,嶄新的商業模式、跨領域的整合應用也層出不窮。迎接新科技帶來新工作機會的同時,人才技能必須時常更新,以掌握未來世界的人力需求及工作樣態的變化。   根據臺灣經濟研究院研究報告指出,隨著人工智慧、物聯網、大數據、資訊安全等技術發展,將會為我國帶來新的人力需求;反之,設備操作、倉儲物流、行政庶務等事務性及高重複性工作,則可能因新科技而受到衝擊。然而,人類的工作真的會被AI和機器人取代嗎?國際研究暨顧問機構Gartner指出,2020年,雖然有180萬個職位被AI取代,不過同時AI也將創造230萬個工作機會,帶動整體工作機會正成長。未來的人力資源趨勢將是人工智慧結合人腦的工作型態,隨著自動化科技的引進顛覆人類在工作上所扮演角色,勞動者必須具備新的技術和能力,以因應這一波數位趨勢。   人才職能重塑 已是世代常態 各種新興科技正在重塑我們的世界,我們是否都準備好了呢?現今企業普遍面臨相當大之人才挑戰,人才競爭態勢只會越來越激烈,數位科技浪潮下,在可預見的未來,機器人或人工智慧一定會對企業人力運用造成影響,企業數位轉型已經是勢在必行的壓力,就公司而言,企業所需的人才技能隨著公司經營策略的調整均在不斷轉變中,人才需要積極主動、擁抱改變,人才所具備的技能如不隨著大環境的變動,將面臨無法與時俱進的風險、最終可能被市場淘汰。   過去用一把刷子行走職場、或是十年磨一劍的年代已經過去,單一技能很容易被潮流取代、唯有具備數位科技、跨領域專長的人才方能在瞬息萬變的職場上勝出。世界經濟論壇的報告指出,全球所有受雇員工有半數以上(54%)需要在未來三年內接受大幅度的技能重塑與提升訓練。而數位科技人才常需隨趨勢發展而更新專業能力,根據之前Gartner的一份調查,職場員工平均每三年需更新一次職務內容與數位科技專業能力。   職能再進化 先找出自己的型 在這波數位技能革命中,企業必須打造新的人才職能規格、於公司內部創造並鼓勵員工持續學習的環境和文化,同時協助員工捨棄舊技能與發展工作所需新技能。由於企業很難找到各方面條件都符合的現成人選,招募到合適的人才所需之時間已經越來越長。有越來越多的企業支持從既有的員工進行在職培訓,並轉型為數位科技人才,不僅有效降低企業招募時間與經費成本,也可以避免招募到的員工不適任無法久留的風險。越來越多的企業正在提高技能重塑的投資,在企業發展數位轉型的同時,偕同組織內的人才一起精進、重塑員工技能,及早做好職能轉型的全面準備。   然而,職能轉型並非一件容易的事情,根據108年經濟部人工智慧產業人才需求調查發現,並非所有現職員工都能成功轉型人工智慧人才,最被企業看好且轉型成功率高的人才通常已具備相當基礎(有型)、在這個基礎上進行職能轉型較容易成功;例如工程類職務(如:系統工程師、後端軟體工程師) 本身即具有程式撰寫、系統開發能力,較容易轉型為機器學習工程師及AI應用工程師等AI新興職務。而資料類職務(如:資料庫工程師、統計分析師)已具有資料庫或數據分析等基礎,亦容易轉型為資料工程師或資料分析師。而一般常見的產品經理、專案經理及行銷企劃專員等職務,已具備專案管理、產品管理、行銷推廣、跨部門溝通…等軟實力,若能再強化AI相關基礎知識,也容易轉型為AI專案經理或AI產品經理。   生命不息 學習不止 迅速和持續變化的工作性質正在改變學習與工作間的關係,當我們一直被機器追趕著學習新技能,如何能夠有效應對新世代的變遷、在數位經濟的潮流中成為未來產業所亟需的人才?在數位時代的潮流之下,新世代的人才需要透過不同管道不斷精進自我,才能持續增加自己的附加價值,而不被時代所淘汰。未來的人才唯有在終生學習、科技協作、軟技能和環境應變等四個面向深化努力,方能應對快速變遷、日新月異的產業趨勢。   在終生學習方面,除了持續學習的腳步外,在學習的方向上,也要注意學習內容與工作之融合度,以期能符合實際工作的職能需求,此外考量個人能力及人格特質做個性化的學習,也對強化自身附加價值,以及未來職涯的發展有所助益;在科技協作方面,隨著AI與自動化的興起,新的工作型態對人機協作的需求也越來越高,在人類主導的情況下,由機器提供輔助進行工作,將會成為產業從人工朝向智慧化發展過程中過渡的第一步,因此在科技協作的學習投入,將能有效幫助人才面對AI化與自動化的挑戰;軟技能是人類勝出機器的關鍵,包括溝通、思考和創意等在現今這個科技時代愈趨重要,未來人才需要培養機器所無法取代的能力,以增進自身在職場的不可取代性;在環境應變方面,由於近年來產業趨勢的變遷快速,新技術的推陳出新使得人才在適應環境變化上的需求大幅提升,未來的人才也需要像電腦持續定期更新,隨時檢視自己的技能、擁有持續重塑自己以靈活應變的能力,才能在時代的潮流中維持競爭力!     財團法人資訊工業策進會∕數位教育研究所∕數位轉型訓練中心 陳麗萍 組長
AI創作音樂有可能成為一種新趨勢嗎?
音樂是全世界共通的語言,大家都同樣使用12個音符,但卻能創造出各種風格的音樂。目前主打透過AI生成音樂的服務越來越多,在國外還有透過 AI 即時生成電子樂的音樂串流服務,這樣的音樂創作方式有可能會成為趨勢嗎?
到了5G時代,那麼邊緣運算會有何不同嗎?
我們都知道物聯網的概念開啟了科技應用的新視野,當越來越多元件走向微型化、智慧化,數據海嘯也隨之而來,如何讓這些裝置以最有效率的方式運作,互通有無,並發揮大數據的優勢,成了當務之急。邊緣運算便是實現運算資源佈局最佳化的關鍵途徑,不過現在有了5G的出現,對於邊緣運算會有什麼影響呢?
最近在AI資料分析常使用到的"增強分析"是什麼意思?
「增強分析」(augmented analytics)被預測為今年十大戰略趨勢,它對一般企業來說意味著什麼?對數據科學家來說影響又有多大?希望可以了解一下
資料分析的步驟大致怎麼進行?
現在大家都在說大數據以及資料分析,但是究竟該如何使用,又有哪些步驟跟細節呢?感覺這是一項非常專業但是又不得不去了解的技術。

熱門發表
如果提供影像辨識的訓練資料不足,AI電腦視覺技術是不是就派不上用場了?
目前深度學習很火,從醫療、零售、倉儲、工業到監控等,好像各種影像辨識都能用到,但往往在一個地方卡關,那就是沒有足夠大量且有代表性的資料提供"訓練",有沒有可能用少量資料來達成好的辨識效果呢?
【解題建議】利用OpenPose來解決骨架(姿態、行為)分析
此次出題有很多項目和姿態(行為)分析有關(如下所示),而其根本就是要先找出人的骨架,再加上時間序列來分析骨架各特徵點的位移,進而判定使用者的動作(類型)。 【華碼數位】 體適能動作與姿勢辨識:以影像分析運動者姿態。 【宸訊科技】 利用動態影像辨識技術完成對農民於田間作業之行為分類與分析並能結合AI技術、配合專家互動,持續調整分類學習精準度:從串流影像中分析農業作業姿態(行為) 。 【集思動力】 iSEM多裂肌脊椎運動AI體況分析應用:透過影像、視頻分析人體動作姿態是否滿足特定位置、角度。 【百一電子】 AI電腦視覺辨識男生/女生的情緒與動作事件 :透過視頻分析十六種動作行為。 【良品嚴選】 客戶輪廓分析與服務人員及時輔助系統:從視頻分析客戶在店面行為以提供智能零售。 【良品嚴選】 線上連結線下新零售之AI分析:從視頻中分析行銷手段是否改變消費者行為。 【艾爾塔科技】 線下零售數據消費者行為洞察與全通路數據整合:透過人流資訊分析及預測消費者行為。 【卡訊電子】 智慧教室語音與影像偵測數據AI分析:建立語音、影像辨識老師、學生行為以增進學習效益。 而在開源技術中以CMU的OpenPose最為知名,包含有身體、頭(臉部)、手等部位,有興趣的朋友可以參考一下 https://github.com/CMU-Perceptual-Computing-Lab/openpose
數據「學」無止盡!機器學習、深度學習、統計學究竟差在哪?
數據當道的現今,多少人、事、物受惠於這些龐大的數據分析和學習,但你知道機器學習、深度學習、統計學的差異是什麼嗎?
Time is money!如何讓製程最佳化、讓生產更簡單?
從網路時代到物聯網興起,工業 4.0 強調自動化與生產線聯網功能,而新一代的智慧工廠發展,則更仰賴邊際運算、AI 和數據分析。然而,究竟要如何讓製程最佳化,使得生產速度提升呢?
CES展上發佈的蚊子偵測器怎麼辨別這種微小差異的?
以色列新創業者Bzigo在CES展出一款室內蚊子或小型飛蟲偵測器,宣稱能夠偵測距離8公尺內的蚊子、追蹤蚊子飛行的軌跡,但蚊子很小隻且飛行速度不慢,實際可以偵測到的成效不知道如何,怎麼辨別蚊子或小型飛蟲和其他東西的差異?  

主題分類